OXZEO双功能催化剂。大连化物所供图
■本报见习记者 孙丹宁
【资料图】
化学工业中,85%以上的过程都依赖催化剂加快反应速率。但在大多数情况下,决定催化反应效率的两个重要参数——反应物的转化率和目标产物的选择性,往往相互纠缠,就像跷跷板一样,转化率提高了,选择性就降低,此消彼长,无法兼顾。
如何解开这种“纠缠”,破解“跷跷板”效应,实现更精准、更高效催化,是催化基础科学和应用研究面临的重要挑战,也是催化研究工作者努力的方向。
中国科学院大连化学物理研究所(以下简称大连化物所)焦峰博士、潘秀莲研究员和包信和院士的研究团队在煤经合成气直接转化制烯烃OXZEOR-TO方面取得创新,为破解高活性和高选择性难以兼得这一“跷跷板”瓶颈问题提供了一个行之有效的科学方法。相关研究成果5月19日发表于《科学》。
从实验室走进工厂
低碳烯烃(包括乙烯、丙烯、丁烯)是重要的工业原料,日常生活中的各种塑料和树脂等产品都离不开它。
目前,低碳烯烃主要是从石油化工中得到的。但是,我国能源资源禀赋的特点是“贫油少气相对富煤”,探索用煤炭代替石油来生产低碳烯烃对于保障我国能源安全具有重要意义。而煤基合成气(一氧化碳和氢气的混合气)作为碳资源利用的重要平台化合物,如何由合成气一步转化制低碳烯烃一直是该领域国际研究的前沿。
在传统费托合成技术路线中,采用金属或金属碳化物催化剂,反应物分子的活化与产物分子的生成,在开放的催化剂表面同一种催化反应活性中心上发生,因此无法精确控制碳-碳偶联,这导致烃类产物碳链长度分布较宽。研究团队经过大量研究,创制了一种活性中心分离的氧化物和分子筛复合的催化体系(OXZEO)。
该体系中,反应物一氧化碳和氢气的活化解离以及活性中间体乙烯酮CH2CO的生成均在氧化物ZnCrOx表面进行,中间体通过气相扩散进入分子筛孔道,随后碳-碳偶联生成烯烃的反应过程在分子筛限域孔道中实现。这样,团队实现了反应物活化和产物生成两个活性中心的有效分离,在国际上首次实现当一氧化碳转化率为17%时,低碳烯烃的选择性达80%,突破了合成气直接制烯烃反应中低碳烯烃选择性不能高于58%的ASF理论极限。而且,该过程省去了水煤气变换和中间产物的合成步骤,从原理上开创了一条低耗水和低排放的煤转化新途径。
这一结果于2016年在《科学》报道后,引起了同行的高度关注和称赞,随即大连化物所与企业合作创制了OXZEOR-TO催化剂,并于2020年在工厂完成了年产1000吨低碳烯烃的工业性试验,验证了这一研究成果在科学原理上的正确性和工艺过程中的可行性。据统计,国内外现有20余个研究团队基于这一概念进行系统性研究,研究体系从合成气转化拓展到二氧化碳的高效利用。
Copyright 2015-2022 财务报告网版权所有 备案号: 京ICP备12018864号-19 联系邮箱:29 13 23 6 @qq.com