(5)级数的运算和拉格朗日余项、拉格朗日误差
注意:
(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
(2)微积分BC课程比AB课程考察内容更多,题目更难,AB的内容和难度大概相当于BC的1/2 。
微积分定理:———
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
b(上限)∫a(下限)f(x)dx=F(b)—F(a)
这即为牛顿—莱布尼茨公式。
牛顿—莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。
微积分常用公式:———
熟练的运用积分公式,就要熟练运用导数,这是互逆的运算,下满提供给大家一些可能用到的三角公式。
微积分基本定理:———
(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法.
(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便.
题型:
已知f(x)为二次函数,且f(—1)=2,f′(0)=0,f(x)dx=—2,
(1)求f(x)的解析式;
(2)求f(x)在[—1,1]上的最大值与最小值.
解:
(1)设f(x)=ax2+bx+c(a≠0),
则f′(x)=2ax+b
Copyright 2015-2022 财务报告网版权所有 备案号: 京ICP备12018864号-19 联系邮箱:29 13 23 6 @qq.com